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ABSTRACT: This paper presents an optimal path tracking scheme for a vehicle handling dynamics model with 

eight degrees of freedom. A fuzzy logic controller (FLC) is incorporated to handle nonlinearities using heuristic 

rules. Particle Swarm Optimization (PSO) is applied to optimize the scaling factors of the FLC outputs, ensuring 

normalized ranges for controller inputs and outputs. The optimization achieved convergence within 154 iterations. 

Simulation results under ISO lane change maneuvers at 70-80 kph demonstrate that the optimized fuzzy controller 

significantly improves trajectory tracking performance, reducing lateral deviation and enhancing control stability 

compared to the baseline controller. 
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1. INTRODUCTION 

Vehicle dynamics simulations have long supported system design and improvement. Numerous 

research studies can be found in the literature on the development of driver-steering, whole vehicle 

dynamics and/or sub-system characterization and controller models. Some of these researches have 

particularly been focused on to improve the provided results by applying the well-known optimization 

techniques. Optimization and control problems often require analytical models in early design stages 

[1]. However, complex models frequently demand advanced optimization for effective results. Fuzzy 

logic methods excel in nonlinear control, using linguistic terms that align with subjective aspects of 

vehicle handling and stability [2]. This study aims to enhance the performance of a fuzzy logic controller 

(FLC) for vehicle path tracking by optimizing its output scaling factors using Particle Swarm 

Optimization (PSO) [3]. Unlike conventional methods that optimize fuzzy membership functions or 

rules, scaling factors were chosen for simplicity and computational efficiency. The proposed method is 

evaluated on an eight-degree-of-freedom vehicle dynamics model under ISO lane change maneuvers at 

70-80 kph. 

 

Optimization techniques in fuzzy logic controllers (FLCs) are commonly applied to membership 

functions or scaling factors, integral elements of PID-like fuzzy controllers. Rajeswari and Lakshmi [3] 

explored an active suspension system controlled by an FLC designed for disturbance rejection. They 

compared Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for tuning the FLC's scaling 

factors. Results demonstrated that PSO achieved faster convergence and superior optimization of fitness 

values compared to GA. 

 

Thanok & Manukid Parnichkun [4] proposed a linear control algorithm for regulating throttle valve 

angle and brake force in a simplified first-order vehicle model. PSO was employed to optimize the 

sliding surface and gain parameters of the sliding mode controller. However, optimization was not 

applied to the FLC responsible for generating the brake force. 
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Talib and Darus [5] developed a semi-active suspension system with a magnetorheological (MR) 

damper. They compared FLC-PSO and PID-PSO configurations by optimizing the FLC scaling factors 

and PID controller gain parameters using PSO. Their simulations revealed that the PSO-optimized FLC 

achieved the lowest Mean Square Error (MSE) in system response and outperformed both the PSO-

tuned PID and the passive suspension system in terms of ride comfort. 

 

Bingul and Karahan [5] applied PSO to tune a Mamdani-type FLC for trajectory planning in a 2DOF 

robotic system. They optimized both the FLC membership functions and PID controller gain parameters 

using three cost functions. Results indicated that the FLC tuned with PSO consistently outperformed the 

PID controller. 

 

Hurel et al. [6] enhanced the performance of an active suspension system using a PD-like fuzzy 

controller. PSO was used for offline tuning of scaling factors applied to both inputs and outputs of the 

FLC. The optimized controller demonstrated stable convergence and improved ride comfort metrics. 

 

Hunaini et al. [7] focused on an automatic steering control system employing an FLC for lateral 

motion and a PID controller for yaw motion control. PSO was utilized to optimize the FLC membership 

functions and PID coefficients. The online application of PSO yielded superior trajectory-following 

performance. 

 

Khodayari et al. [8] modelled a double-lane change maneuver using neuro-fuzzy and soft computing 

techniques. Subtractive clustering was employed to define fuzzy rules, while PSO was applied to refine 

the initial models, further enhancing their performance. 

 

Chen [9] and Joudaa et al. [10] emphasized the importance of scaling factors in FLC systems. Joudaa 

highlighted their role in mapping real-world input data to the universe of discourse of fuzzy variables, 

effectively fine-tuning system performance akin to PID controller optimization.  

 

In this study, a previously developed path following vehicle control model [11] was taken into 

consideration from the optimization point of view. The simulation was performed in the Matlab© 

environment, utilizing a Simulink© vehicle model controlled by a fuzzy logic system designed to track 

a predefined trajectory. Particle Swarm Optimization method was chosen to improve the outputs of the 

rule-based FLC using the scaling factors. Instead of optimizing fuzzy membership functions or rules, 

output scaling factors were optimized using PSO for simplicity and effectiveness.  Unlike traditional 

approaches that optimize fuzzy membership functions or rule bases, this study optimizes the output 

scaling factors of the FLC. This method offers significant advantages for complex FIS structures, such 

as the one used in this study, which consists of 5 inputs, 3 outputs, and over 200 fuzzy rules. By focusing 

on scaling factors, the optimization process becomes computationally efficient while maintaining the 

integrity of the rule base. 
 

2. METHODOLOGY 

2.1. Vehicle Model 

The vehicle model used in this study is based on the research done by Uzunsoy and Erkilic [11]. The 

model incorporates eight degrees of freedom, including lateral, yaw, longitudinal, and roll motions, 

while accounting for traction and braking forces during handling maneuvers, as well as the dynamics of 

individual wheels. Equations (1)-(4) can be derived by Newton-Euler approach, representing the four 

rigid body degree of freedom, according to the longitudinal, lateral forces and roll and yaw moments 

applied onto the vehicle system such as longitudinal force, Fx, lateral force, Fy, roll moment, Mx, and 

yaw moment, Mz. Further details on the model can be found in the same study [11].  

 

( ) ( ) ( ) ( )
.

( ) cos cos sin
x xrL xrR xfL xfR brL brR bfL bfR yfL yfR

F m U rV F F F F F F F F F F   = − = + + + − − − + − +   (1) 
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In conjunction with the vehicle model, a semi-analytical tire model representing both longitudinal 

and lateral forces was used [11]. The model is originated by the studies of Allen et al [12, 13].   

 

2.2. Fuzzy Logic Controller (FLC) 

Human experience can be introduced to a controller by fuzzy logic much better than conventional 

control approaches and satisfactorily accurate results can be provided [14]. Besides, the FLC can be 

used as a multi-input nonlinear state feedback controller [11]. In this study, a well-known Mamdani-

type fuzzy inference system (FIS) was used to mimic some basic human driver behaviors in following 

a defined trajectory.  
 

 

Figure 1. Details of FIS structure integrated into the vehicle dynamics model [11] 

 

The used FIS and the controller strategy can be summarized as in Figure 1. Depending on the 

experience, Gaussian, triangular or trapezoidal membership functions were used in the inputs and 

outputs of the FIS structure (see Figure 2). Error 1 and 2 are measures of the vehicle orientation from 

the driver point of view, while the rest is related to the distance left to the first target, lateral acceleration 

and longitudinal velocity of the vehicle. Then, three main control parameters such as steering angle, 

brake and gas pedals, those can be provided by a driver, were the outputs.  
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Figure 2. Input (a) and output (b) membership functions of the FIS [11] 

 

Meanwhile, the model does not claim to cover all the aspects of a human driver and the performance 

of the FIS depends on the experience. Exhaustive details of the FLC model can be found in Uzunsoy’s 

research [11]. However, at this point, an optimization study can further improve the previously accepted 

reliability and accuracy of the model outputs.    

  

2.3. Particle Swarm Optimization (PSO) 

As it was discussed in the Introduction part, PSO method was chosen to improve the FLC model 

results. Swarm Intelligence is a part of artificial intelligence based on collective and decentralized 

behavior of individuals those interact with each other and the environment. PSO, on the other hand, is a 

stochastic evolutionary algorithm, based on swarm intelligence that searches for the solution of 

optimization problems to predict the behavior of individuals according to the particular objectives of the 
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problem [15]. It was first developed by Dr. Kennedy and Dr. Eberhart in 1995. It is proposed as an 

alternative for evolutionary techniques such as genetic algorithms, especially from the points of 

computational effectiveness and easy implementation capability [16]. The main approach of the PSO 

algorithm is to search through a j-dimensional problem to optimize an objective function. Furthermore, 

it has the ability to reach the global optimum while avoiding local optima [17].  

 

In PSO, each individual is called particle, and the population is called a swarm. A swarm can travel 

in many directions over the search space in order to satisfy the limits of the objective function for a 

system. A swarm of particles can be replaced on a j-dimensional search space for an i-variabled problem. 

PSO is initialized by random velocities and the positions to search for an optimum solution [18]. Every 

particle is updated to find the two best values in each iteration. The best position (solution) found in the 

j-dimensional space during the iteration is “Pbest” and the best value provided so far by any particle in 

the population is the global best (Gbest). The velocities of each particle are adjusted accordingly to its 

own flying experience and the other particles flying experience. Then, the velocity of the particle is 

determined by the expression given in Equation (5).  

 

𝑣𝑖𝑗
𝑡+1 = 𝑤𝑣𝑖𝑗

𝑡 + 𝑐1𝑟1𝑗
𝑡 [𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡 − 𝑥𝑖𝑗
𝑡 ] + 𝑐2𝑟2𝑗

𝑡 [𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑗
𝑡 ]  (5) 

 

where, w is the inertia coefficient, and the first term of the equation is the inertia component which 

is responsible for keeping the particle in the same direction as it was before. 𝑣𝑖𝑗
𝑡  represents the velocity 

of the ith particle in dimension j, at time t. In a similar manner, 𝑥𝑖𝑗
𝑡  is the position vector of the current 

particle, c1 and c2 are acceleration constants or learning factors of the algorithm (cognitive and social 

scaling factors, respectively), while r1 and r2 are the random numbers from the uniform distribution of 

(0,1). 𝑥𝑖
𝑡 in the Equation (6) on the other hand, denotes the position vector of particle i in a 

multidimensional search space at time step t and the position of each particle is updated in the search 

space by using the expression of 𝑥𝑖
𝑡+1. 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1  (6) 

 

2. FINDINGS AND DISCUSSION 

The mathematical model was applied in Matlab/Simulink environment with the inclusion of FLC 

and PSO algorithm. The basic model diagram is shown in Figure 3. The PSO algorithm written in Matlab 

environment optimized the scaling factors KA, KB, and KC, which were applied to the FLC outputs.  

 

 

Figure 3. Simulink model of vehicle and fuzzy driver 

 

ITAE of Objective function was calculated by the expression given in Equation (7): 

 

𝐼𝑇𝐴𝐸 = ∫[𝜔1(𝑡). 𝑡|𝑒1(𝑡)| + 𝜔2(𝑡). 𝑡|𝑒2(𝑡)| + 𝜔3(𝑡). 𝑡|𝑒3(𝑡)|]  (7) 
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In the equation, ω1, ω2, ω3 are the weighting factors, e1, e2 and e3 are Error1, (Error1-Steer Angle) 

and d(Error1-Steer Angle)/dt, respectively. PSO parameters used to improve the controller outputs are 

shown in Table 1. The parameters of the PSO algorithm were chosen based on well-established initial 

estimates commonly used in the literature. The swarm size was set to 50, a value frequently used in PSO 

applications as it balances computational efficiency and optimization performance. This choice aligns 

with recommendations in the literature (Kennedy and Eberhart, 1995), ensuring adequate exploration of 

the solution space for moderately complex problems like the one presented in this study. 

 

Table 1. Parameters used for particle swarm optimization 

Number of Iterations 154 

Inertia weight, w(min, max) (0.4, 0.9)  

Learning factors: (c1, c2) (2, 2) 

Swarm size 50 

 

The convergence of PSO was achieved at 154 iterations, as shown in Figure 4, demonstrating the 

stability and effectiveness of the optimization process. The optimized scaling factors obtained through 

PSO were found to be KA =892.67, KB =565.19, and KC = 874.06. These values ensure that the fuzzy 

controller outputs (steering angle, accelerator pedal, and brake pedal) are appropriately scaled for 

optimal vehicle path tracking performance. 

 

 
Figure 4. PSO convergence characteristics  

 

The optimized fuzzy driver significantly improved the vehicle's trajectory tracking performance 

under the ISO lane change maneuver at 70-80 kph, as depicted in Figure 5. The optimized trajectory 

closely follows the desired path, minimizing lateral deviation compared to the original fuzzy controller. 

Specifically, the lateral deviation peak was reduced from 5.25 meters to 5.09 meters at 70 kph 

(approximately 3.05% improvement) and from 4.38 meters to 3.97 meters at 80 kph (approximately 

9.36% improvement). 

 

These results highlight the effectiveness of the optimized scaling factors in enhancing the 

performance of a complex FIS structure with over 200 rules, demonstrating the practicality of this 

approach for high-dimensional fuzzy systems. This method circumvents the need for direct rule or 

membership function modification, significantly reducing computational complexity while maintaining 

robust trajectory tracking, particularly at higher speeds where improvements are more pronounced. 
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Figure 5. Vehicle trajectory comparison for normal and optimized fuzzy driver at 70 and 80 kph 

vehicle longitudinal velocity 3,97*4,38   5,09-5,25 

 

3. CONCLUSION 

This study developed an optimal path tracking scheme for a vehicle handling dynamics model using 

a fuzzy logic controller (FLC) optimized with Particle Swarm Optimization (PSO). The optimization 

focused on output scaling factors, ensuring computational simplicity and effectiveness. PSO 

demonstrated stable convergence within 154 iterations. Under ISO lane change maneuvers at 70-80 kph, 

the optimized FLC achieved reduced lateral deviation and improved control stability compared to the 

baseline fuzzy controller. 

 

These findings confirm that scaling factor optimization is a viable approach for enhancing FLC 

performance in vehicle handling systems. Future work can focus on real-time implementation of 

adaptive PSO methods and testing the controller under varying road conditions to ensure robustness and 

practicality. 
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